Cross-Polarized Synthetic Aperture Radar: A New Potential Measurement Technique for Hurricanes

1William Perrie, and 2Biao Zhang

1Bedford Institute of Oceanography, Dartmouth, CANADA
2Nanjing Information Science and Tech University, China
Contents

1. Motivation
2. Method
3. Results
4. Conclusions
SAR wind speed retrieval

\[\sigma_0(\theta, U_{10}, \phi) = A_0(\theta, U_{10})[1 + A_1(\theta, U_{10}) \cos \phi + A_2(\theta, U_{10}) \cos(2\phi)]^{1.6} \]
 Movitation

Wind direction

- SAR image itself
- Weather prediction model
- Scatterometer observations

limitations
NRCS_VV dependent on incidence angle and wind direction
RADARSAT-1 \rightarrow \text{“the past”}

only HH-polarization data...
2. Wind blending for conventional algorithms

Co-Polarization Model: CMOD5.N

\[\sigma_{0}^{(m)} = B0(1 + B1 \cos \phi + B2 \cos 2\phi)^{1.6} \]

\[B1 = \frac{c_{14}(1 + x) - c_{15}v(0.5 + x - \tanh[4(x + c_{16} + c_{17}v)])}{1 + \exp(0.34(v - c_{18}))} \]

\[B2 = (-d_{1} + d_{2}v_{2}) \exp(-v_{2}) \]

1: Wind speed, wind direction and radar incidence angle dependence.

2: NRCS_VV saturates at high winds.

- the wind speed ambiguity problem in SAR Imagery
NRCS under high winds

Donelan et al.

Incident angle = 35°
- Donelan et al. (2004)

Incident angle = 31°
- Fernandez et al. (2006)
Wind retrieved from self-simulated NRCS VV polarization

CMOD5

COMD4HW

HWGMF_V

HWGMF_H

smaller solution

bigger solution
How to remove speed ambiguity?

- Neither smaller solution OR bigger solution can be taken directly as the real wind.
Speed ambiguity removal for hurricanes

- A typical hurricane wind profile

from Holland (1980) profile
Ambiguity in hurricane speed profile

![Graph showing wind speed profile with radial distance](image_url)
Speed ambiguity removal

SAR NRCS for hurricane

Wind direction

Ambiguous winds

Pixel to eye distance

Threshold positions

ambiguity removal criteria / quadrant

Final winds

Speed ambiguity removal method
Speed ambiguity removal for Rita
→ Envisat ASAR image (Sep 22 03:22 2005)
Wind retrieval

- Smaller ambiguous solutions

Wind direction was taken as the tangential angle with 20° inflow angle
Wind retrieval

- Bigger ambiguous solutions

Wind direction was taken as the tangential angle with 20º inflow angle.
After ambiguity removal
Speed difference with NHC winds

Smaller solution - NHC winds
Speed difference with NHC winds

Final solution - NHC winds
Conclusions to here - 1

1) ambiguity exists in high wind SAR retrievals, more severe at near side of SAR range
2) based on typical cyclone structure, a speed ambiguity removal method is developed
3) method can maybe be generalized and adopted to other GMFs to give improved SAR retrieved winds.

The present – RADARSAT-2

Imaging Modes

Launched – Dec 2007

HH, VV, HV, VH polarization data...
The present – RADARSAT-2

Motivation

C-2PO

NRCS_VH \[\rightarrow\] Independent of incidence angle and wind direction
Polarimetric correlation coefficient between VV and HV

\[
\rho_{VVHV} = \frac{\langle S_{VV} \cdot S_{HV} \rangle}{\sqrt{\langle |S_{VV}|^2 \rangle \langle |S_{HV}|^2 \rangle}}
\]

Scattering matrix

\[
S = \begin{bmatrix}
S_{hh} & S_{hv} \\
S_{vh} & S_{vv}
\end{bmatrix}
\]

RS - 2 Fine Quad-Polarization
NRCS in cross-polarization versus relative wind direction
Real part of Polarimetric correlation coefficient (PCC)

Odd symmetry
Results

Imagery part of Polarimetric correlation coefficient (PCC)

odd symmetry
Wind-vector retrieval algorithm (our idea)

Method

→ solve ambiguity problem
Wspd=15.7 m/s Wdir=169°

Mar 20, 2010 04:33 UTC
Buoy-measured wdir=169°
Our Retrieved wdir=151°

Buoy-measured wspd=15.7 m/s
Our Retrieved wspd=13.7 m/s
Wspd=19.0 m/s Wdir=142°

Jan 09, 2011 05:15 UTC
Buoy-measured $\text{wdir}=142^\circ$
Our Retrieved $\text{wdir}=152^\circ$

Buoy-measured $\text{wspd}=19.0\text{m/s}$
Our Retrieved $\text{wspd}=17.8\text{ m/s}$
Wspd=11.1 m/s Wdir=311°
Buoy-measured wdir=311°
Our Retrieved wdir=323°

Buoy-measured wspd=11.1 m/s
Our Retrieved wpsd=10.3 m/s
odd / even symmetries of polarimetric correlation coefficients (PCC) for co- / cross-polarizations → remove wind ambiguity.

we propose a retrieval algorithm for wind speed + direction simultaneously based on C-2PO, CMOD5.N for quad-pol data.

1) Zhang, B., Perrie, W., Vachon, P. Li, X., Pichel, W., 2012: Ocean Vector Winds Retrieval from C-band Fully Polarimetric SAR Measurements. In press *IEEE TGRS*

3. SAR-wind models

NRCS_VV, NRCS_HH depend on incidence angle, wind direction

NRCS_VH, NRCS_VH not sensitive to incidence angle, wind direction

Quad-Polarization Ocean Backscatter data

NRCS_VV saturates

no NRCS_HV saturation

C-band Cross-Polarization model: C-2PO

\[\sigma_{VH}^0 = 0.580 * U_{10} - 35.652 \]
Hurricane wind-speed retrievals with C-2PO

SAR-derived wind map from C-2PO model and RADARSAT-2 Hurricane Bertha image acquired on July 12, 2008 at 10:14 UTC

Hurricane Bertha – 12 July 2008
SAR-derived wind map from C-2PO model and RADARSAT-2 Hurricane Ike image acquired on Sep 10, 2008 at 23:54 UTC

Hurricane Ike – 10 Sept 2008
Hurricane Danielle – 28 Aug 2010
Hurricane Earl on Sep 02, 2010 at 22:59 UTC

RADARSAT-2 dual-polarization SAR image
Fig. 3. One RADARSAT-2 dual-polarization SAR image acquired over Hurricane Earl at 22:59 UTC on September 2, 2010, (a) VV polarization and (b) VH polarization. Colorbar show sigma-naught in VV polarization (σ_{VV}^0) and in VH polarization (σ_{VH}^0) in dB, respectively. SAR-retrieved wind speeds from (c) the CMOD5.N model and σ_{VV}^0, with external wind directions from NOAA HRD H*Wind are overlaid, and (d) from the C-2PO model and σ_{VH}^0. Colorbar shows wind speeds at 10-m height (U_{10}) in m/s. RADARSAT-2 Data and Products © MacDonald, Dettwiler and Associates Ltd, - All Rights Reserved.
Comparison of C-2PO and CMOD5. SAR wind retrievals

Along track-SFMR (hr) time series

SFMR-measured 10s rain rates (mm/hr) time series (hr)

rain? high waves, eyewall gradients…?
Comparisons of C-2PO and CMOD5.N SAR-retrieved winds U10 (Sep 02, 2010 at 22:59 UTC) with collocated H*Wind
Wind speed from NDBC buoy #41001 is 18.1 m/s
from C-2PO model is 16.0 m/s
from CMOD5.N is 17.4 m/s
from H*Wind is 16.8 m/s
Hurricane Ike

dual-polarization SAR image at 23:56 UTC on Sep 10, 2008

VV polarization VH polarization

CMOD5.N + wind directions via H*Wind

C-2PO model U10
Comparisons of C-2PO and CMOD5.N SAR-retrieved winds U10 (23:56 UTC, on September 10, 2008) with collocated H*Wind

CMOD5.N → bias of -4.89 m/s and RMS error of 6.51 m/s
C-2PO → bias of -0.88 m/s and RMS error of 4.47 m/s
The future - coordinated international constellation of SAR Winds satellites?
Conclusions – part 3

- C-2PO model presented
- insensitive to wind direction, radar incidence angle
 - easy mapping of observed cross-pol NRCS to wind speed
- avoids errors in wind speed retrievals that occur in CMOD5.N
- in quad-pol data, C-2PO does not seem to saturate
 - potential for hurricane wind retrievals
- dual-pol Earl: high wind verification of R2 SAR – airborne SFMR